Darwin Library, Now Online, Reveals Mind of 19th-Century Naturalist | The Chronicle

Bookmarked Darwin Library, Now Online, Reveals Mind of 19th-Century Naturalist by Jie Jenny Zou (The Chronicle of Higher Education)

A portion of Charles Darwin’s vast scientific library—including handwritten notes that the 19-century English naturalist scribbled in the margins of his books—has been digitized and is available online. Readers can now get a firsthand look into the mind of the man behind the theory of evolution.

The project to digitize Darwin’s extensive library, which includes 1,480 scientific books, was a joint effort with the University of Cambridge, the Darwin Manuscripts Project at the American Museum of Natural History, the Natural History Museum in Britain, and the Biodiversity Heritage Library.

The digital library, which includes 330 of the most heavily annotated books in the collection, is fully indexed—allowing readers to search through transcriptions of the naturalist’s handwritten notes that were compiled by the Darwin scholars Mario A. Di Gregorio and Nick Gill in 1990.

Charles Darwin’s Library from the Biodiversity Heritage Library

Entropy Is Universal Rule of Language | Wired Science

Read Entropy Is Universal Rule of Language by Lisa Grossman (Wired)
The amount of information carried in the arrangement of words is the same across all languages, even languages that aren't related to each other. This consistency could hint at a single common ancestral language, or universal features of how human brains process speech. "It doesn't matter what language or style you take," said systems biologist…
The research this article is based on is quite interesting for those doing language research.

Barnes & Noble Board Would Face Tough Choices in a Buyout Vote | Dealbook

Read Barnes & Noble Faces Tough Choices in a Buyout Vote by Steven Davidoff Solomon (DealBook)
If Leonard Riggio, Barnes & Noble's chairman, joins Liberty Media's proposed buyout of his company, the board needs to decide how to handle his 30 percent stake before shareholders vote on the deal.
This story from the New York Times’ Dealbook is a good quick read on some of the details and machinations of the Barnes & Noble buyout. Perhaps additional analysis on it from a game theoretical viewpoint would yield new insight?

The Science of Why We Don’t Believe Science | Mother Jones

Read The Science of Why We Don't Believe Science by Chris Mooney (Mother Jones)
How our brains fool us on climate, creationism, and the vaccine-autism link.
This is a fantastic article that everyone should read and take some serious time to absorb!
Bookmarked Selective pressures on genomes in molecular evolution by Charles Ofria, Christoph Adami, Travis C. Collier (arXiv.org, 15 Jan 2003)
We describe the evolution of macromolecules as an information transmission process and apply tools from Shannon information theory to it. This allows us to isolate three independent, competing selective pressures that we term compression, transmission, and neutrality selection. The first two affect genome length: the pressure to conserve resources by compressing the code, and the pressure to acquire additional information that improves the channel, increasing the rate of information transmission into each offspring. Noisy transmission channels (replication with mutations) gives rise to a third pressure that acts on the actual encoding of information; it maximizes the fraction of mutations that are neutral with respect to the phenotype. This neutrality selection has important implications for the evolution of evolvability. We demonstrate each selective pressure in experiments with digital organisms.
To be published in J. theor. Biology 222 (2003) 477-483
DOI: 10.1016/S0022-5193(03)00062-6

Synthetic Biology’s Hunt for the Genetic Transistor | IEEE Spectrum

Read Synthetic Biology's Hunt for the Genetic Transistor (spectrum.ieee.org)
How genetic circuits will unlock the true potential of bioengineering 
This is a great short article on bioengineering and synthetic biology written for the layperson. It’s also one of the best crash courses I’ve read on genetics in a while.

IPTV primer: an overview of the fusion of TV and the Internet | Ars Technica

Read IPTV primer: an overview of the fusion of TV and the Internet by Iljitsch Van Beijnum (Ars Technica)

Profound as it may be, the Internet revolution still pales in comparison to that earlier revolution that first brought screens in millions of homes: the TV revolution. Americans still spend more of their non-sleep, non-work time on watching TV than on any other activity. And now the immovable object (the couch potato) and the irresistible force (the business-model destroying Internet) are colliding.

For decades, the limitations of technology only allowed viewers to watch TV programs as they were broadcast. Although limiting, this way of watching TV has the benefit of simplicity: the viewer only has to turn on the set and select a channel. They then get to see what was deemed broadcast-worthy at that particular time. This is the exact opposite of the Web, where users type a search query or click a link and get their content whenever they want. Unsurprisingly, TV over the Internet, a combination that adds Web-like instant gratification to the TV experience, has seen an enormous growth in popularity since broadband became fast enough to deliver decent quality video. So is the Internet going to wreck TV, or is TV going to wreck the Internet? Arguments can certainly be made either way.

This brief overview of IPTV is about as concise as they get. It’s recommended for entertainment executives who need to get caught up on the space as well as for people who are contemplating “cutting the cable cord.” There’s still a lot of improvement the area can use…

‘The Information’ by James Gleick – Book Review by Janet Maslin | New York Times

Reposted ‘The Information’ by James Gleick - Review (nytimes.com)
“The Information,” by James Gleick, is to the nature, history and significance of data what the beach is to sand.
This book is assuredly going to have to skip up to the top of my current reading list.

“The Information” is so ambitious, illuminating and sexily theoretical that it will amount to aspirational reading for many of those who have the mettle to tackle it. Don’t make the mistake of reading it quickly. Imagine luxuriating on a Wi-Fi-equipped desert island with Mr. Gleick’s book, a search engine and no distractions. “The Information” is to the nature, history and significance of data what the beach is to sand.

In this relaxed setting, take the time to differentiate among the Brownian (motion), Bodleian (library) and Boolean (logic) while following Mr. Gleick’s version of what Einstein called “spukhafte Fernwirkung,” or “spooky action at a distance.” Einstein wasn’t precise about what this meant, and Mr. Gleick isn’t always precise either. His ambitions for this book are diffuse and far flung, to the point where providing a thumbnail description of “The Information” is impossible.

So this book’s prologue is its most slippery section. It does not exactly outline a unifying thesis. Instead it hints at the amalgam of logic, philosophy, linguistics, research, appraisal and anecdotal wisdom that will follow. If Mr. Gleick has one overriding goal it is to provide an animated history of scientific progress, specifically the progress of the technology that allows information to be recorded, transmitted and analyzed. This study’s range extends from communication by drumbeat to cognitive assault by e-mail.

As an illustration of Mr. Gleick’s versatility, consider what he has to say about the telegraph. He describes the mechanical key that made telegraphic transmission possible; the compression of language that this new medium encouraged; that it literally was a medium, a midway point between fully verbal messages and coded ones; the damaging effect its forced brevity had on civility; the confusion it created as to what a message actually was (could a mother send her son a dish of sauerkraut?) and the new conceptual thinking that it helped implement. The weather, which had been understood on a place-by-place basis, was suddenly much more than a collection of local events.

Beyond all this Mr. Gleick’s telegraph chapter, titled “A Nervous System for the Earth,” finds time to consider the kind of binary code that began to make sense in the telegraph era. It examines the way letters came to treated like numbers, the way systems of ciphers emerged. It cites the various uses to which ciphers might be put by businessmen, governments or fiction writers (Lewis Carroll, Jules Verne and Edgar Allan Poe). Most of all it shows how this phase of communication anticipated the immense complexities of our own information age.

Although “The Information” unfolds in a roughly chronological way, Mr. Gleick is no slave to linearity. He freely embarks on colorful digressions. Some are included just for the sake of introducing the great eccentrics whose seemingly marginal inventions would prove to be prophetic. Like Richard Holmes’s “Age of Wonder” this book invests scientists with big, eccentric personalities. Augusta Ada Lovelace, the daughter of Lord Byron, may have been spectacularly arrogant about what she called “my immense reasoning faculties,” claiming that her brain was “something more than merely mortal.” But her contribution to the writing of algorithms can, in the right geeky circles, be mentioned in the same breath as her father’s contribution to poetry.

The segments of “The Information” vary in levels of difficulty. Grappling with entropy, randomness and quantum teleportation is the price of enjoying Mr. Gleick’s simple, entertaining riffs on the Oxford English Dictionary’s methodology, which has yielded 30-odd spellings of “mackerel” and an enchantingly tongue-tied definition of “bada-bing” and on the cyber-battles waged via Wikipedia. (As he notes, there are people who have bothered to fight over Wikipedia’s use of the word “cute” to accompany a picture of a young polar bear.) That Amazon boasts of being able to download a book called “Data Smog” in less than a minute does not escape his keen sense of the absurd.

As it traces our route to information overload, “The Information” pays tribute to the places that made it possible. He cites and honors the great cogitation hives of yore. In addition to the Institute for Advanced Study in Princeton, N.J., the Mount Rushmore of theoretical science, he acknowledges the achievements of corporate facilities like Bell Labs and I.B.M.’s Watson Research Center in the halcyon days when many innovations had not found practical applications and progress was its own reward.

“The Information” also lauds the heroics of mathematicians, physicists and computer pioneers like Claude Shannon, who is revered in the computer-science realm for his information theory but not yet treated as a subject for full-length, mainstream biography. Mr. Shannon’s interest in circuitry using “if … then” choices conducting arithmetic in a binary system had novelty when he began formulating his thoughts in 1937. “Here in a master’s thesis by a research assistant,” Mr. Gleick writes, “was the essence of the computer revolution yet to come.”

Among its many other virtues “The Information” has the rare capacity to work as a time machine. It goes back much further than Shannon’s breakthroughs. And with each step backward Mr. Gleick must erase what his readers already know. He casts new light on the verbal flourishes of the Greek poetry that preceded the written word: these turns of phrase could be as useful for their mnemonic power as for their art. He explains why the Greeks arranged things in terms of events, not categories; how one Babylonian text that ends with “this is the procedure” is essentially an algorithm; and why the telephone and the skyscraper go hand in hand. Once the telephone eliminated the need for hand-delivered messages, the sky was the limit.

In the opinion of “The Information” the world of information still has room for expansion. We may be drowning in spam, but the sky’s still the limit today.

2011 USC Viterbi Lecture “Adventures in Coding Theory” by Elwyn Berklekamp

Bookmarked 2011 Andrew Viterbi Lecture Ming Hsieh Department of Electrical Engineering (USC - Viterbi School of Engineering)

"Adventures in Coding Theory"

Professor Elwyn Berlekamp
University of California, Berkeley

Gerontology Auditorium, Thursday, March 3, 4:30 to 5:30 p.m.

>> Click here for live wedcast

Abstract
The inventors of error-correcting codes were initially motivated by problems in communications engineering. But coding theory has since also influenced several other fields, including memory technology, theoretical computer science, game theory, portfolio theory, and symbolic manipulation. This talk will recall some forays into these subjects.

I wish I could be at this lecture in person today, but I’ll have to live with the live webcast.

Confessions of David Seidler, a 73-year-old Oscars virgin

Read Confessions of David Seidler, a 73-year-old Oscars virgin by David Seidler (LA Times)
My first realization I was hooked on Oscar was when I seriously began pondering one of mankind's most profound dilemmas: whether to rent or buy a tux. That first step, as with any descent down a...
This is a great (and hilarious) story by and about the writer of THE KING’S SPEECH.

Amplify’d from www.latimes.com

Confessions of David Seidler, a 73-year-old Oscars virgin

The screenwriter, whose first nomination was for ‘The King’s Speech,’ ponders his formalwear options for the big night, his standing in Hollywood and much more.

Bookmarked ScienceDirectThermodynamics of natural selection III: Landauer's principle in computation and chemistry by Eric Smith (Journal of Theoretical Biology Volume 252, Issue 2, 21 May 2008, Pages 213-220)
This is the third in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and their relations to the thermodynamics of computation. The previous two papers have developed reversible chemical transformations as idealizations for studying physiology and natural selection, and derived bounds from the second law of thermodynamics, between information gain in an ensemble and the chemical work required to produce it. This paper concerns the explicit mapping of chemistry to computation, and particularly the Landauer decomposition of irreversible computations, in which reversible logical operations generating no heat are separated from heat-generating erasure steps which are logically irreversible but thermodynamically reversible. The Landauer arrangement of computation is shown to produce the same entropy-flow diagram as that of the chemical Carnot cycles used in the second paper of the series to idealize physiological cycles. The specific application of computation to data compression and error-correcting encoding also makes possible a Landauer analysis of the somewhat different problem of optimal molecular recognition, which has been considered as an information theory problem. It is shown here that bounds on maximum sequence discrimination from the enthalpy of complex formation, although derived from the same logical model as the Shannon theorem for channel capacity, arise from exactly the opposite model for erasure.
https://doi.org/10.1016/j.jtbi.2008.02.013
Bookmarked Thermodynamics of natural selection II: Chemical Carnot cycles by Eric Smith (Journal of Theoretical Biology Volume 252, Issue 2, 21 May 2008, Pages 198-212)
This is the second in a series of three papers devoted to energy flow and entropy changes in chemical and biological processes, and to their relations to the thermodynamics of computation. In the first paper of the series, it was shown that a general-form dimensional argument from the second law of thermodynamics captures a number of scaling relations governing growth and development across many domains of life. It was also argued that models of physiology based on reversible transformations provide sensible approximations within which the second-law scaling is realized. This paper provides a formal basis for decomposing general cyclic, fixed-temperature chemical reactions, in terms of the chemical equivalent of Carnot's cycle for heat engines. It is shown that the second law relates the minimal chemical work required to perform a cycle to the Kullback–Leibler divergence produced in its chemical output ensemble from that of a Gibbs equilibrium. Reversible models of physiology are used to create reversible models of natural selection, which relate metabolic energy requirements to information gain under optimal conditions. When dissipation is added to models of selection, the second-law constraint is generalized to a relation between metabolic work and the combined energies of growth and maintenance.
https://doi.org/10.1016/j.jtbi.2008.02.008
Bookmarked Thermodynamics of natural selection I: Energy flow and the limits on organization by Eric Smith (Journal of Theoretical Biology, Volume 252, Issue 2, 21 May 2008, Pages 185-197)
This is the first of three papers analyzing the representation of information in the biosphere, and the energetic constraints limiting the imposition or maintenance of that information. Biological information is inherently a chemical property, but is equally an aspect of control flow and a result of processes equivalent to computation. The current paper develops the constraints on a theory of biological information capable of incorporating these three characterizations and their quantitative consequences. The paper illustrates the need for a theory linking energy and information by considering the problem of existence and reslience of the biosphere, and presents empirical evidence from growth and development at the organismal level suggesting that the theory developed will capture relevant constraints on real systems. The main result of the paper is that the limits on the minimal energetic cost of information flow will be tractable and universal whereas the assembly of more literal process models into a system-level description often is not. The second paper in the series then goes on to construct reversible models of energy and information flow in chemistry which achieve the idealized limits, and the third paper relates these to fundamental operations of computation.
https://doi.org/10.1016/j.jtbi.2008.02.010
Bookmarked Information and Meaning in Evolutionary Processes by William F. Harms (Cambridge University Press)
The most significant legacy of philosophical skepticism is the realization that our concepts, beliefs and theories are social constructs. This belief has led to epistemological relativism, or the thesis that since there is no ultimate truth about the world, theory preferences are only a matter of opinion. In this book, William Harms seeks to develop the conceptual foundations and tools for a science of knowledge through the application of evolutionary theory, thus allowing us to acknowledge the legacy of skepticism while denying its relativistic offspring.